Refine Your Search

Topic

Search Results

Technical Paper

Experimental Investigation on the Failures of Engine Piston Subjected to Severe Knock

2019-04-02
2019-01-0705
The previous study indicates that the detonation waves generated by acetylene/oxygen mixture can converge in the combustion chamber. In order to verify the destructive effect of detonation wave convergence on piston materials, the detonation bomb device was modified to fundamentally investigate the material failures of aluminum alloy for pistons. The results show that the specimens are destroyed in the middle and edge region after dozens of detonations, which is consistent with the typical characteristics of the piston failures in engines. Therefore, the hypothesis that failures of piston material is caused by the detonation wave convergence is verified.
Technical Paper

Optical Experiments on Strong Knocking Combustion in Rapid Compression Machines with Different Fuels

2019-04-02
2019-01-1142
Nowadays the strong knocking combustion involving destructive pressure wave or shock wave has become the main bottleneck for highly boosted engines when pursuing high thermal efficiency. However, its fundamental mechanism is still not fully understood. In this study, synchronization measurements through simultaneous pressure acquisition and high-speed direct photography were performed to comparatively investigate the strong knocking combustion of iso-octane and propane in a rapid compression machine with flat piston design. The pressure characteristics and visualized images of autoignition and reaction wave propagation were compared, and the correlations between thermodynamic trajectories and mixture reactivity progress were analyzed. The results show that iso-octane behaves a greater propensity to strong knocking combustion than propane at similar target pressures.
Technical Paper

Evaluation of Knock Intensity and Knock-Limited Thermal Efficiency of Different Combustion Chambers in Stoichiometric Operation LNG Engine

2019-04-02
2019-01-1137
Liquefied natural gas (LNG) engine could provide both reduced operating cost and reduction of greenhouse gas (GHG) emissions. Stoichiometric operation with EGR and the three-way catalyst has become a potential approach for commercial LNG engines to meet the Euro VI emissions legislation. In the current study, numerical investigations on the knocking tendency of several combustion chambers with different geometries and corresponding performances were conducted using CONVERGE CFD code with G-equation flame propagation model coupled with a reduced natural gas chemical kinetic mechanism. The results showed that the CFD modeling approach could predict the knock phenomenon in LNG engines reasonably well under different thermodynamic and flow field conditions.
Journal Article

Experimental Investigation of Proton Exchange Membrane Fuel Cell with Metal Foam Flow Field

2019-04-02
2019-01-0388
Compared with conventional flow field, metal foam has been increasingly used for gas distributor in the PEM (proton exchange membrane) fuel cell due to its high porosity and conductivity, which significantly enhances the species transport under high current density condition. In this study, the cell performances with metal foam and graphite parallel flow field are compared under normal and subzero temperature conditions. Besides, electrochemical impedance spectroscopy (EIS) is recorded to characterize the Ohmic, polarization and polarization resistance. Under normal condition, the cell with metal foam exhibits three times better performance than the one with parallel flow field. Meanwhile, the effects of inlet gas humidity and flow rates on cell performance are also studied, indicating that the cathode flooding easily occurs due to its difficult water removal. However, the high flow rate can greatly ease the cathode water flooding.
Technical Paper

LES Analysis on Cycle-to-Cycle Variation of Combustion Process in a DISI Engine

2019-01-15
2019-01-0006
Combustion cycle-to-cycle variation (CCV) of Spark-Ignition (SI) engines can be influenced by the cyclic variations in charge motion, trapped mass and mixture composition inside the cylinder. A high CCV leads to misfire or knock, limiting the engine’s operating regime. To understand the mechanism of the effect of flow field and mixture compositions on CCV, the present numerical work was performed in a single cylinder Direct Injection Spark-Ignition (DISI) engine. A large eddy simulation (LES) approach coupled with the G-equation combustion model was developed to capture the CCV by accurately resolving the turbulent flow field spatially and temporally. Further, the ignition process was modeled by sourcing energy during the breakdown and arc phases with a line-shape ignition model which could move with the local flow. Detailed chemistry was solved both inside and outside the flame front. A compact 48-species 152-reactions primary reference fuel (PRF) reduced mechanism was used.
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell

2018-09-10
2018-01-1718
Proton exchange membrane (PEM) fuel cell is widely recognized as an outstanding portable power plant and expected to be possibly commercialization in the near future. As is well known, mechanical stresses implemented on the bipolar plates during the assembly procedure should have prominent influences on mass and heat transfer behavior inside the cell, as well as the resultant performance. In this study, an analytical model is proposed to comprehensively investigate the influence of clamping force on the mass transport, electrochemical properties and overall cell output capability of a PEM fuel cell. The results indicate that proper clamping force not only benefits the gas leakage prevention but also increases the contact area between the neighboring components to decrease the contact ohmic resistance.
Technical Paper

Numerical Investigation on Effects of Combustion Chamber Structure and Oxygen Enriched Air on Combustion and Emission Characteristics of Marine Diesel Engine

2018-09-10
2018-01-1786
In order to improve the combustion and emissions for high-speed marine diesel engines, numerical investigations on effects of different combustion chamber structures combined with oxygen enriched air have to be conducted. The study uses AVL Fire code to establish three-dimensional combustion model and simulate the in-cylinder flow, air-fuel mixing and combustion process with the flow dynamics metrics such as swirl number and uniformity index, analyze the interactional effects of combustion chamber structures and oxygen enriched air against the experimental data for a part load operation at 1350 r/min, find the optimized way to improve engine performance as well as decrease the NOx and soot emissions. The novelty is that this study is to combine different oxygen concentration with different combustion chamber structures including the re-entrant chamber, the straight chamber and the open chamber.
Technical Paper

Effects of Low Temperature Reforming (LTR) Products of Low Octane Number Fuels on HCCI Combustion

2018-09-10
2018-01-1682
In order to achieve high-efficiency and clean combustion in HCCI engines, combustion must be controlled reasonably. A great variety of species with various reactivities can be produced through low temperature oxidation of fuels, which offers possible solutions to the problem of controlling in-cylinder mixture reactivity to accommodate changes in the operating conditions. In this work, in-cylinder combustion characteristics with low temperature reforming (LTR) were investigated in an optical engine fueled with low octane number fuel. LTR was achieved through low temperature oxidation of fuels in a reformer (flow reactor), and then LTR products (oxidation products) were fed into the engine to alter the charge reactivity. Primary Reference Fuels (blended fuel of n-heptane and iso-octane, PRFs) are often used to investigate the effects of octane number on combustion characteristics in engines.
Technical Paper

Co-Simulation and Analysis on Aerodynamic Noise at the Engine Inlet

2018-04-03
2018-01-0686
As the intake noise is a major contributing factor to automotive passenger compartment noise levels, it has received much more attention than before. Because the plastic manifolds could induce and transmit more noise owing to their lighter weight, aerodynamic noise has become a more serious problem in plastic manifolds than in conventional aluminum-made manifolds. Due to the complexity of aerodynamic noise of the intake system, it is difficult to predict the noise precisely, especially for the part whose frequency is higher than 1000 Hz. This paper introduces a new co-simulation method to simulate the aerodynamic noise at the engine inlet. With the coupled simulation between two programs, GT-Power and Fluent, it could simulate the gas flow inside the engine intake system, under the actual running condition of engine.
Technical Paper

Dynamic Characteristics Analysis and Fatigue Damage Estimation of a Compressor Blade under Fluid-Structure Interaction

2018-04-03
2018-01-1206
During the aero-engine operation, the compressor blades are subjected to periodic inertial force and aerodynamic excitation caused by blade rotation and airflow disturbance, respectively. Under the coupling alternating loads, the blade is prone to high cycle fatigue failure. In this paper, a time domain calculation model of fluid-structure interaction (FSI) is established to study the vibration characteristics of the blade and its failure modes are analyzed. Then, the fatigue damage of the blade under multi-level loading is evaluated by the nonlinear damage accumulation model. Considering the coupling effect of the airflow and the blade, computational fluid dynamics (CFD) is applied to calculate the aerodynamic parameters on the blade surface under different working conditions, which is imported to the finite element (FE) model to analyze the dynamic characteristics.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of the Direct Injection Dimethyl Ether Enabled Micro-Flame Ignited (MFI) Hybrid Combustion in a 4-Stroke Gasoline Engine

2018-04-03
2018-01-1247
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to improve gasoline engines’ efficiency and simultaneously achieve ultra-low NOx emissions. Two of the primary obstacles for applying CAI combustion are the control of combustion phasing and the maximum heat release rate. To solve these problems, dimethyl ether (DME) was directly injected into the cylinder to generate multi-point micro-flame through compression in order to manage the entire heat release of gasoline in the cylinder through port fuel injection, which is known as micro-flame ignited (MFI) hybrid combustion.
Technical Paper

Numerical Investigation on Effects of Combustion Chamber Structure and Intake Air Humidification on Combustion and Emission Characteristics of Marine Diesel Engine

2017-10-08
2017-01-2254
In order to improve the combustion and emissions for high-speed marine diesel engines, numerical investigations on effects of different combustion chamber structures combined with intake air humidification have to be conducted. The study uses AVL Fire code to establish three-dimensional combustion model and simulate the in-cylinder flow, air-fuel mixing and combustion process with the flow dynamics metrics such as swirl number and uniformity index, analyze the interactional effects of combustion chamber structures and intake air humidification against the experimental data for a part load operation at 1350 r/min, find the optimized way to improve engine performance as well as decrease the NOx and soot emissions. The novelty is that this study is to combine different air humidifying rates with different combustion chamber structures including the re-entrant chamber, the straight chamber and the open chamber.
Technical Paper

Effects of Butanol Isomers on the Combustion Characteristics and Particle Number Emissions of a GDI Engine

2017-10-08
2017-01-2323
Butanol is a promising alcohol fuel. Previous studies on combustion and diesel engines showed different trends in sooting tendencies of the butanol isomers (n-butanol, iso-butanol, sec-butanol and tert-butanol).The impact of butanol isomers on the particulate emissions of GDI (Gasoline Direct Injection) engines, however, has not been reported. This work examines the combustion performance and particle number emissions of a GDI engine fueled with gasoline/butanol blends in steady state modes. Each isomer was tested at blend ratios from 10% to 50% by volume. Spark timings for all the fuels are set to obtain the maximum break torque (MBT), i.e. the MBT spark timings. Results show that the particle number concentration is reduced significantly with increasing butanol content for all the isomers.
Technical Paper

Catalytic Characteristic and Application Performance of Catalyzed DPFs Coated with Various Content of Precious Metal in China

2017-10-08
2017-01-2379
Recent toxicological and epidemiologic studies have shown that diesel emissions have been a significant toxic air contaminant. Catalyzed DPF (CDPF) not only significantly reduces the PM mass emissions (>90%), but also further promotes carrier self-regeneration and oxidize more harmful gaseous pollutants by the catalyst coated on the carrier. However, some ultrafine particles and potentially harmful gaseous pollutants, such as VOCs species, originally emitted in the vapor-phase at high plume temperature, may penetrate through the CDPF filter. Furthermore, the components and content of catalyst coated on the CDPF could influence the physicochemical properties and toxicity intensity of those escaping ultrafine particles and gaseous pollutants. In this work, (1) we investigated the influence of precious metal content as a variable parameter on the physicochemical properties and catalytic activities of the small CDPF samples.
Technical Paper

Investigation on Cylinder Bore Deformation under Static Condition Based on Fourier Decomposition

2017-03-28
2017-01-0366
Due to the mechanical forces under static conditions, the engine cylinders cross section will not be a round circle any more once they are installed. The deformation of an engine cylinder causes increasing lubricating oil consumption and abnormal wear, resulting in worse fuel economy and emissions. However, prediction of deformation on a liner has not been made because of the complication of conditions and structure. In this study, a V6-type engine body model was built and meshed with Hypermesh suit software. Then, cylinder deformation under static condition has been simulated and analyzed. First of all, experimental work was done to verify the engine model. Basically, few parameters like pre-tightened force, structure and distribution of bolts have been investigated to figure out how the cylinder bore deformation behaves via finite element analysis. Also, a simple Matlab program was developed to process the data.
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

2017-03-28
2017-01-0576
Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
Technical Paper

A Theoretical Investigation of the Combustion of PRF90 under the Flexible Cylinder Engine Mode

2017-03-28
2017-01-1027
On-board fuel reforming offers a prospective clean combustion mode for the engines. The flexible cylinder engine strategy (FCE) is a new kind of such mode. In this paper, the combustion of the primary reference fuel of PRF90 was theoretically investigated in a homogeneous charge compression ignition engine to validate the FCE mode, mainly focusing on the ignition delay time, the flame speed, and the emissions. The simulations were performed by using the CHEMKIN2.0 package to demonstrate the fuel reforming process in the flexible cylinder, the cooling effect on the reformed products, and the combustions of the mixture of the fresh fuel and the reformed products in the normal cylinders. It was found that the FCE mode decreased the ignition delay time of the fuel by about 35 crank angles at a typical engine condition.
Technical Paper

Surface Functional Groups and Graphitization Degree of Soot in the Sooting History of Methane Premixed Flame

2017-03-28
2017-01-1003
The evolution of surface functional groups (SFGs) and the graphitization degree of soot generated in premixed methane flames are studied and the correlation between them is discussed. Test soot samples were obtained from an optimized thermophoretic sampling system and probe sampling system. The SFGs of soot were determined by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) after removing the soluble impurities from the soot samples, while the graphitization degree of soot was characterized by Raman spectrum and electron energy loss spectroscopy (EELS). The results reveal that the number of aliphatic C-H groups and C=O groups shows an initial increase and then decrease in the sooting history. The large amount of aliphatic C-H groups and small amount of aromatic C-H groups in the early stage of the soot mass growth process indicate that aliphatic C-H groups make a major contribution to the early stage of soot mass growth.
Technical Paper

Effects of Lubricating Oil Metallic Content on Morphology, Nanostructure and Graphitization Degree of Diesel Engine Exhaust Particles

2017-03-28
2017-01-1009
In this paper, the influences of metallic content of lubricating oils on diesel particles were investigated. Three lubricating oils with different levels of metallic content were used in a 2.22 Liter, two cylinders, four stroke, and direct injection diesel engine. 4.0 wt. % and 8 wt. % antioxidant and corrosion inhibitor (T202) were added into baseline lubricating oil to improve the performance respectively. Primary particle diameter distributions and particle nanostructure were compared and analyzed by Transmission Electron Microscope. The graphitization degrees of diesel particles from different lubricating oils were analyzed by Raman spectroscopy. Conclusions drawn from the experiments indicate that the metallic content increases the primary particles diameter at 1600 rpm and 2200 rpm. The primary particles diameter ranges from 5 nm to 65 nm and the distribution conformed to Gaussian distribution.
X